
Microcontroller
ENGINEERING REVIEW

Volume 1

Table of Contents

The fast microcontroller:
a decade of growth and
innovation1

Exploring the TINI
platform6

Asynchronous serial-to-
Ethernet device servers......9

Designing a networked
On/Off switch using the
TINI platform16

Embedded networking
with IPv620

The fast microcontroller:
a decade of growth and innovation
System designers know that the microcontroller is the heart of any embedded system—that’s
where the action takes place. For over 18 years, Dallas Semiconductor has been redefining the
ubiquitous 8-bit microcontroller. Perhaps the biggest improvements in the last 10 years have
been made in the speed of instruction execution. Our 1 clock-per-machine cycle processors
reached the ultimate performance goal—1 clock-per-machine cycle currently at 33 million
instructions per second (MIPS). Using this core, our secure, networked, and mixed-signal 8051-
microcontroller families continue to set the standard for feature integration and innovation.

Why base a family of innovative microcontrollers on the venerable 8051 instruction set? Because
quite simply it is one of the most popular 8-bit microcontroller architectures in the world. The
instruction set is simple to understand, making it a favorite of embedded system designers. Many
of the instructions directly address I/O pins, allowing quick manipulation (bit-banging) of exter-
nal peripherals. A tremendous variety of on-chip peripherals is available in an almost limitless
number of combinations. In addition, development tools for the 8051-microcontroller family are
widely available, so it is easy and inexpensive to start developing an application.

Safe and secure

In 1987 Dallas Semiconductor introduced the DS5000T, an independently developed microcon-
troller based on the 8051 instruction and feature set. To offer new features and benefits, our engi-
neers based the design on NV SRAM technology rather than EPROM. Leveraging its leadership
in low-power technology, the memory partitioning and battery-backup circuitry was integrated
directly onto the microcontroller die. The chief advantage of this system was speed. Writing to
most nonvolatile memories is slow, but NV SRAM can read or write in a single cycle at high
speed. This makes it ideal for high-speed, nonvolatile data-logging applications where data must
be captured in real-time. When combined with an external SRAM and battery, the result is a
complete microcontroller system with up to 64kB of nonvolatile program and data memory.

NV SRAM technology enables both data and program memory to be in-system reprogrammed,
byte-by-byte, on the fly. In a standard microcontroller system, program memory needs either
to be physically removed from the system (EPROM) or block erased, prohibiting memory
access during the erasure (flash). NV SRAM-based microcontrollers can be quickly and easily
programmed from a PC or device programmer by its serial port. A ROM-resident bootstrap
loader downloads program and data directly to the microcontroller, allowing fast debugging or
field upgrades.

The distinctive advantages of NV SRAM provide a new perspective for firmware security.
Because the bootstrap loader completely controls the loading of the program into NV SRAM,
we encrypted the address and data bus with a 40-bit or 80-bit encryption key. Any program or
data loaded into the microcontroller is automatically encrypted before it is stored in the SRAM.
This encryption thwarts hackers from stealing the program or data in the microcontroller. During
the execution of an instruction, the microcontroller fetches an encrypted op code, decrypts and
executes it in a single machine cycle. The use of NV SRAM allows read/write access at full
speed, with no delay for instruction decoding.

. . . (the 8051) is one of
the most popular 8-bit
microcontroller architec-
tures in the world.

2

These security features culminated in the DS5240/50, the newest of what are now known as the
secure microcontrollers, used in payment systems worldwide. Introduced in 2002, these tamper-
reactive microcontrollers incorporate a 4 clock-per-machine cycle core as well as enhanced
triple-DES encryption of their program memory. No other microcontrollers provide this level of
security while executing every instruction at full speed. Security is further enhanced by the addi-
tion of intrusion-detection inputs and on-chip tamper sensors that automatically erase the mem-
ory as a tamper response. An integral microprobe shield prevents die tampering. Again, NV
SRAM is best for high-security applications. Its high-speed write timing allows the micro-
processor to erase confidential or sensitive data faster than any other type of memory.

More speed, less power

Although the 8051 processing core remained static from its conception in the late 1970s through
the 1980s, embedded systems did not. System designers continued to improve and upgrade their
8051-based applications by adding new software features and peripherals. This “feature creep”
pushed the limits of available 8051 performance. Unfortunately, improvements to the 8051 core
failed to keep pace, and it appeared that system designers would have to switch to another
processor and perform a costly redesign to upgrade their systems.

The performance bottleneck was the 1970s
vintage processing core of the 8051 micro-
controller. Although external crystal
speeds approached 40MHz, the traditional
8051 still required 12 clocks to execute a
single machine cycle. Each instruction
required from 1 to 4 machine cycles,
meaning an instruction could take as little
as 12 or as many as 48 oscillator clocks.
Throughput was therefore limited to just
over 3 MIPS, even while executing some-
thing as basic as a string of 1-cycle NOP
instructions (Figure 1).

In 1991 we set out to reengineer the 8051 microcontroller for performance. The engineering
team started by analyzing the traditional 8051 design. The original 12 clock-per-machine cycle
architecture was terribly wasteful; most instructions were forced to execute dummy cycles.
Engineers rebuilt the CPU from the ground up so that it only required 4 clocks-per-machine
cycle instead of 12. A second internal data bus eliminated architectural bottlenecks that might
hamper performance. High-powered I/O drivers increased switching speed during external
memory operations. All the internal peripherals such as timers and serial ports ran at the faster
clock speeds. But every step of the way, there was one absolute necessity—the instruction set
had to remain op-code compatible with the 8051 instruction set.

The result? A new 8051-based microcontroller delivered triple the efficiency of the original
8051 core, with the majority of instructions operating three times faster for the same oscillator
frequency. In addition to the increased efficiency of the core, the maximum external oscillator
frequency of most devices increased to 33MHz or 40MHz. System designers previously held
back by the older, much slower 8051 were able to upgrade their system to a maximum speed of
10 MIPS without software changes.

In addition to the speed improvement, the core redesign yielded another benefit: reduced power
consumption. The laws of physics decree that power consumed by a digital circuit is propor-
tional to the number of transistors switched and the switching rate (frequency). Because the new
core used fewer oscillator clocks per machine cycle, it consumed significantly less power per
instruction per second than a traditional 8051.

Power management modes temporarily reduced the power consumption of the microcontroller
through the use of a software-configurable internal clock divider. By reducing the machine cycle
rate from 4 clocks-per-machine cycle to 64 or 256 clocks-per-machine cycle, power consump-

M.C. M.C. M.C. M.C. M.C. M.C. M.C. M.C. M.C. M.C. M.C. M.C.

SYSTEM CLOCK

DS80C420

DS80C320

8051

M.C. M.C. M.C.

M.C.

M.C. = MACHINE CYCLE

Figure 1. Reducing the num-
ber of clocks per machine
cycle allows 3x the perfor-
mance with the same instruc-
tion set (12 vs. 4 vs. 1 clock-
per-machine cycle).

The DS5240/50 are the
only microcontrollers
capable of providing the
highest level of security
while executing every
instruction at full speed.

3

tion was further reduced. A switchback feature let the device return
to divide-by-4 mode upon receipt of an external interrupt or detec-
tion of a serial-port start bit. This allowed the device to remain in
a low-power state but quickly resumed full-speed operation when
needed. Figure 2 shows the relative power consumption in differ-
ent modes.

33 MIPS and beyond

In 1997 Dallas Semiconductor began designing a core for ultimate
performance. Applications based on the 8051 were continuing to
evolve, and customers clamored for even more performance. The
engineering team set their sights on the performance peak: a
microcontroller that executed the 8051 instruction set but used
just 1 clock-per-machine cycle. Using a highly parallel architec-
ture and a new fabrication process, a pin-for-pin, drop-in replace-
ment 8051 was designed.

The result is the new DS89C420/430/440/450, ultra-high-perfor-
mance 1 clock-per-machine cycle microcontrollers capable of exe-
cuting up to 33 MIPS (Figure 3). These devices break previous
performance barriers, providing 16-bit microcontroller performance
with an 8-bit price. A variety of bus addressing modes allow users
to fine-tune processor operation to the needs of the specific appli-
cation design. But most importantly, they remain 100% 8051
instruction-set compatible and still execute existing 8051 applica-
tions faster than any other 8051-based microcontroller.

In addition to the lightning-fast core, the DS89C420/30/40/50
incorporate up to 64kB of in-system programmable flash memory.
The ROM-based bootstrap loader allows modification of the
microcontroller code before, during, or after final assembly, offer-
ing maximum flexibility. Unlike other microcontrollers that use
proprietary or nonstandard interfaces, the DS89C420 bootstrap
loader is accessed by its serial port from a standard PC, using any
terminal emulator software.

Fast execution times beg for bigger program sizes

The advantage of speed is lost if programmers cannot have sufficient memory address space for
their expressions. The traditional 8051 used a 16-bit memory bus, restricting the memory range
to 64kB. For some applications this limited memory range was sufficient. But as applications
increased in code size and complexity, we realized applications needed a solution that main-
tained as much 8051 compatibility as possible.

Some designers found it possible to expand the addressing range by using bank-switching tech-
niques. I/O lines double as address lines, expanding memory at the sacrifice of peripheral I/O.
But this has two major shortcomings. Firstly, code must be segmented into 64kB or smaller
chunks, which is a time-consuming task that must be redone each time the code is modified.
Secondly, software routines must be written to manually switch the I/O lines to their appropri-
ate state each time the code transitions between segments. The software overhead associated
with these efforts degrades performance.

A better solution would implement a device with a larger address bus that addresses more mem-
ory. One such device, the DS80C400, has a 24-bit address bus that directly addresses 16MB of
program memory and 16MB of data memory. This is done without requiring any new op codes
in the 8051 instruction set. Two modes are provided. The first is a paged addressing mode, which
incorporates advanced automatic bank switching, greatly speeding expanding memory access
while remaining binary compliant with traditional 8051 compilers. The second contiguous mode

FREQUENCY (MHz)

I C
C

(m
A)

40

35

30

25

20

15

10

5

0
0 5 10 15 20 25 30

XTAL/4

IDLE XTAL/64 XTAL/1024

M
IP

S

1

5

25

0

33

PHILIPSPHILIPS
P89C51RB2P89C51RB2

ORIGINAL ORIGINAL
80518051 DS89C420DS89C420

PHILIPS
P89C51RB2

ORIGINAL
8051 DS89C420

Figure 3. The DS89C420
outstrips the competition by
clocking 33 MIPS.

Figure 2. During periods of
reduced activity, our power
management modes consume
less current than Idle mode
but still allow CPU operation.

Every step of the way
there was one absolute
necessity—the instruction
set had to remain op-
code compatible with the
8051 instruction set.

4

allows transparent addressing of the entire 16MB memory map, and requires a compiler that pro-
vides the extra operand required for the 24-bit addresses. The larger address space allows faster
access to larger programs, opening new possibilities such as large libraries of math functions,
lookup tables, or even the Java™ virtual machine, supported by networked microcontrollers
including the DS80C390 and DS80C400 that execute the Tiny Internet Interfaces (TINI®) run-
time environment (See “Exploring the TINI Platform” on page 6).

Data pointers double performance

Far-reaching improvements to all facets of the chip were necessary to avoid creating perfor-
mance bottlenecks. A most important improvement involved accessing MOVX data memory.
Manipulation of data memory on the original 8051 was a cumbersome affair. Accessing a single
byte of MOVX memory required multiple cycles to load the single 16-bit data pointer before
reading or writing the target address.

The inefficiencies multiplied if software needed to perform a block copy operation, which
involved moving data from one MOVX memory location to another. The single data-pointer lim-
itation forced it to double as both the source and destination address in a block copy operation.
The operation on a traditional 8051 microcontroller has been a complicated, multistep procedure:

1) Load the source address into the data pointer.

2) Increment or modify the data pointer to the next datum.

3) Fetch the data from MOVX memory into the accumulator.

4) Save the modified source address to a storage register.

5) Load the destination address into the data pointer.

6) Increment or modify the data pointer to the next datum.

7) Write the data from the accumulator to MOVX memory.

8) Save the modified destination address to a storage register.

One quickly notes that almost half the steps in the above procedure are dedicated to juggling the
source and destination addresses in and out of the single data pointer, which impedes overall per-
formance. The solution adds a second data pointer, creating dedicated registers for the source
and destination. With the second data pointer, much of the data manipulation can be handled in
hardware, reducing software overhead. The dual data pointers are individually addressable, and
a dedicated data pointer select bit indicates which data pointer is the active data pointer during
MOVX instructions. The same block copy operation performed with dual data pointers takes
many fewer steps:

Perform initialization only once:

1) Initialize the source address into the first data pointer.

2) Initialize the destination address into the second data pointer.

Main loop:

1) Fetch the data into the accumulator.

2) Increment or modify the first data pointer to the next source datum.

3) Switch data pointer selector to second data pointer.

4) Write the data from the accumulator to MOVX memory.

5) Increment or modify the data pointer to the next datum.

… the DS89C420
remains 100% 8051
instruction-set compati-
ble so it still executes
existing 8051 applica-
tions faster than any
other 8051-based
microcontroller.

The larger address
space allows faster
access to larger pro-
grams such as the Java
virtual machine, sup-
ported by the
DS80C390 and net-
work microcontrollers.

For more information about maxi-
mizing performance while minimiz-
ing power consumption, refer to
the white paper “Teaching Old Dogs
New Tricks: Improving the Power
Efficiency of 8051-Based Designs”
(www.maxim-ic.com/Design/
8051power.pdf).

Figure 4 shows how a 1000-byte block copy routine on
a 33MHz DS89C420 takes 33% less execution time
when dual data pointers eliminate the overhead associ-
ated with juggling a single data pointer. Some members
of the high-speed and ultra-high-speed microcontroller
families also have additional optional data pointer
enhancements. The auto increment/decrement feature
(denoted as AID in Figure 4) automatically increments
or decrements the data pointer following a MOVX-
related instruction, eliminating the need for the INC
DPTR instruction. The auto-toggle feature (denoted as
TSL in Figure 4) automatically toggles the active data
pointer following a MOVX-related instruction, elimi-
nating the instruction that switches between data point-
ers. Figure 4 shows the relative execution times when
all these features are considered together. Note that with
all features enabled, the DS89C420 performs a 1000-
byte block copy routine 103% faster than the original
8051 microprocessor.

Looking ahead

As applications demand more and more speed, Dallas Semiconductor works harder to exceed
previous performance designs. Whether it is faster stack accesses, expanded addressing, or just
raw processing speed, our microcontroller designs continue to meet the needs of embedded sys-
tem designers.

But competitive designs demand more than just speed. More sophisticated applications require
larger programs, so we are expanding our line of drop-in 8051 microcontrollers to include 64kB
of flash memory. Our new-product pipeline has peripherals in design to increase the capabilities
of their embedded systems while simultaneously reducing board space. The networked micro-
controllers have advanced features including CAN, Ethernet, and 1-Wire® net connectivity for
multitier networking. Secure microcontrollers have hardware-based math accelerators for public-
key cryptography and support rapid zeroization of the keys as a tamper response. Mixed-signal
microcontrollers perform real-world signal processing necessary to make better end equipment.

The road map in Figure 5 demonstrates our commitment to
performance. We are continually refining the microcontroller
core and fabrication processes to optimize performance. Our
original 8051 was clocked at 12MHz; that microcontroller
would have to be clocked at 1.2GHz to achieve the perfor-
mance of what is soon available. Whether it is high-perfor-
mance processors or development-tool support, Dallas
Semiconductor will meet the needs of embedded systems
designers for years to come.

Java is a trademark of Sun Microsystems.
I-Wire and TINI are registered trademarks of Dallas Semiconductor.

45,000

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5000

0
STANDARD

8051
DUAL DPTR DUAL DPTR

w/AID
DUAL DPTR

w/TSL
DUAL DPTR
w/AID + TSL

10
00

-B
YT

E
BL

OC
K

CO
PI

ES
 P

ER
 S

EC
ON

D

Figure 4. Dual data pointer
enhancements improve the
speed of block copy operations.

100MHz
OR 100 MIPS

50MHz
OR 50 MIPS

 33MHz
OR 33 MIPS

2002 2003 2004

Figure 5. Performance of our
1-clock core is expected to
break the 100 MIPS barrier in
the near future.

5

6

Exploring the TINI platform
The TINI platform consists of a microcontroller-based chipset and supporting firmware, both
created by Dallas Semiconductor. This platform, along with hardware and software development
kits, allows rapid prototyping and deployment of IP network-enabled, real-world measurement
and control systems using the industry-standard Java programming language (Figure 1).

Getting started with TINI

The fastest way to begin developing an embedded application is to use a pre-
built, proven reference design for the hardware portion of the system. The
TINI Verification Module (TVM) was developed for this purpose; it also
serves as a reference design for the DS80C400 network microcontroller that
forms the center of the TINI chipset contained on the TVM. Dallas
Semiconductor provides complete schematics and a parts list for the TVM so
that all or part of the design can be reproduced to meet the requirements of a
specific project. In many cases, only a subset of the complete TINI chipset is
needed for a targeted, end-equipment solution. The TINI Verification Module
allows software development to begin using a pretested design while the
development of a more optimized hardware design proceeds in parallel,
reducing overall time-to-market.

The TINIm400-144-02 is a TVM implemented on a 144-pin SO DIMM, a
form factor made popular by notebook PC DRAM. Together with the accom-
panying TINIs400 sockets board, it forms a comprehensive development
system that includes the following features:

• DS80C400 processor running at 29.5MHz

• 1MB battery-backed SRAM and 1MB flash ROM

• 10/100 base-T Ethernet connection

• Two 1-Wire ports (one for internal on-board use and one for external
connections)

• Two RS-232 serial ports, including full-flow control lines on one port;
and a CAN and SPI™ port

Besides the TINIm400 module and TINIs400 sockets board, the only hardware needed is a
power supply (8V to 20V AC/DC) and appropriate cables for connections to the sockets board
such as Cat 5 for Ethernet, 9-pin sub D for serial, and RJ11 for 1-Wire. All software required to
develop and run Java applications on the TINI platform is available as a free download from
www.maxim-ic.com and www.sun.com.

From the ground up

Consider this application example—a remote agricultural station needs to monitor temperature,
rainfall, and humidity levels and adjust an irrigation system based on measured weather patterns.
A personal computer could perform this task, but its uptime might not be sufficient for an unat-
tended application of this type. As a sub-PC system, TINI is much less expensive, more com-
pact, requires far less power, and is easier to maintain. In addition, TINI supports many low-
level communications interfaces that PCs generally do not.

With the wide range of industry-standard interfaces supported by TINI, a broad range of sensors
and actuators can be used to collect the weather data and control the irrigation system. If a device
uses an interface not directly supported by TINI, custom I/O libraries can be used to map the
device onto the TINI memory bus with appropriate support circuitry.

ORIGINAL EQUIPMENT AND
SERVICE PROVIDERS

TECHNOLOGY PARTNERS

TINI PLATFORM

ONLINE SUPPORT AND ENHANCEMENT

DEVELOPMENT KIT

PHYSICAL

TINI CHIPSET REFERENCE DESIGN

END-EQUIPMENT DESIGNS APPLICATION SOFTWARE

TINIm400 HARDWARE
EXTENSIONS

REAL-WORLD SIGNALING

INDUSTRY-STANDARD INTERFACES—RS-232, SPI, 1-Wire, ETC.

NETWORKED MICROCONTROLLERS
DS80C400 DS80C390

TINI CHIPSET

TINI
SPECIFICATION

AND DEVELOPER'S
GUIDE

API
DOCUMENTATION

TINIs390/400
SOCKETS BOARD

CABLES FOR
COMMUNICATIONS

POWER SUPPLY

JAVA
DEVELOPER'S KIT

FROM SUN
MICROSYSTEMS

MULTI-
THREADED

MULTITASKING
OS

JAVA VM
APIs FOR

PHYSICAL WORLD
CONNECTIONS

SILICON
SOFTWARE WITH
AUTO BOOT AND

IPv4/v6

TINI RUNTIME ENVIRONMENT

TINIm390/400
VERFICIATION

MODULE

APPLICATION NOTES,
TUTORIALS, AND
WHITE PAPERS

www.maxim-ic.com
E-MAIL INTEREST

GROUP

OPEN SOURCE LICENSED APIs
MiniML XML PARSER, TINI

HTTPServer, ETC.

FTP RUNTIME
ENVIRONMENT

UPDATE

Figure 1. The TINI platform
allows rapid prototyping
and deployment of IP
network-enabled real-world
measurements.

7

The TINI OS is multitasking and multithreaded, so the agricultural station software can simulta-
neously communicate with multiple devices while it processes data in the background (Figure 2).

Once a data path has been established between the sensors/actuators and TINI, incoming data
must be recorded and analyzed by software. TINI’s ability to run Java code frees developers
from the need to be familiar with the internal details of the DS80C400 processor. However, time-
critical sections of code can be customized if necessary, using the Java native-method mecha-
nism to include highly optimized assembly code.

The TINI runtime environment contains a full Java VM
and API (applications programming interface) that
includes a subset of the Java 1.1 API as well as
additional functionality unique to TINI, such as device
I/O routines for the specialized communications proto-
cols. Java’s robust networking API and its emphasis on
security and memory management make it an ideal
choice for the TINI environment. The Java support that
TINI provides allows applications to be developed
using one of the many integrated development envi-
ronments (IDEs) available for Java. Applications can
also be developed on another platform such as a PC
and ported to TINI when they are complete.

If the Java support in TINI is not needed, it can be removed without sacrificing all the func-
tionality that TINI provides. The core of the TINI OS is contained in the ROM of the DS80C400
and includes a full IPv4/IPv6 network stack as well as automatic network boot capability using
TFTP. These capabilities can be used without the Java VM, and applications running in this man-
ner can be written either directly in assembly language or compiled from C.

From local to global

The agricultural station could be considered complete at this point if a local, closed-loop control
system was the goal. However, without wider network capabilities, any data collected by the sta-
tion must be retrieved manually. If the software needs to be updated, that must be done manual-
ly as well. In addition, there would be no way to verify that the station is running properly with-
out actually traveling to its location and checking.

Almost all systems can benefit from some level of networking, even if it is only used for main-
tenance. The standards-based networking of TINI makes adding this capability straightforward.
Once the network connection is in place, applications can be tested and updated remotely and
multiple TINI installations can be managed from a single location.

TINI is flexible enough to adapt to different networking requirements. Connecting TINI to an
Ethernet network is the simplest route and provides the highest speed, but Ethernet is not always
available. The agricultural station can be in an isolated location with limited connections to the
outside world. In this case, TINI’s dialup PPP networking capability requires only a modem and
standard phone line, cellular phone,1 or equivalent system to connect to the Internet.

Once the network connection has been established, the range of possible uses is vast. TINI includes
support for standard Internet protocols such as TCP/IPv4/v6, DNS, DHCP, HTTP, and FTP. The
agricultural station could host its own web page or provide an FTP interface to download collect-
ed data with minimal coding required. If a specialized protocol is required, TINI’s complete imple-
mentation of the java.net API allows creation of any type of network interface desired.

The default system shell that is included with the TINI runtime environment provides additional
flexibility during application development. This shell features a Unix-like environment with a
password-protected network login for multiple users over Telnet. It also includes FTP capabilities

All software required to
develop and run Java
applications on the TINI
platform is available as a
free download from
www.maxim-ic.com and
www.sun.com.

Figure 2. By using the TINI
platform, equipment can be
monitored and controlled over
wireless or wired networks.

1For an example, refer to idenphones.motorola.com/iden/developer/news_dallas.jsp.

8

so Java applications may be uploaded to the TINI file system and then tested and debugged from
a Telnet session.

Building beyond the platform

TINI ends at the boundary of the Java runtime environment, where real-world application devel-
opment begins. To accelerate the design of their own products and services, first-time develop-
ers might want to evaluate the hardware and software offered by more experienced developers.

Some of the tools and libraries produced by TINI technology partners include the following:

• TiniAnt (tiniant.sourceforge.net/): Extension to Java Ant that simplifies building applica-
tions for TINI

• MinML and MinML-RPC (www.wilson.co.uk/xml/minmlrpc.htm): XML parser and
XML-RPC remote procedure call library optimized to run on TINI

• TiniHttpServer (www.smartsc.com/tini/TiniHttpServer/): Full-featured web server
designed specifically for TINI

• An X10 Library (www.jpeterson.com/rnd/): Allows control of X10 home automation
devices from TINI

• TINI Rapture (sourceforge.net/projects/tinirapt/): Cron-style daemon used to start appli-
cations on TINI automatically

• Java IrDA Lite (sourceforge.net/projects/jir/): IrDA Lite implementation that runs on TINI

Table 1. Example applications for the TINI platform

SPI is a registered trademark of Motorola, Inc.

As a sub-PC system, the
TINI chipset is much less
expensive, more compact,
requires far less power,
and is easier to main-
tain. . . (it) supports many
low-level communications
interfaces that PCs gener-
ally do not.

The TINI runtime environ-
ment contains a full Java
VM and API that includes
a subset of the Java 1.1
API as well as additional
standards-based func-
tionality.

Serial-to-Ethernet Black Box Humidity Monitor Transaction Terminal

Home Monitoring/Automation Barcode Printer Parking Gate Controller

Temperature Monitor/Logger Ticket Printer Traffic Light Controller

Vending Machine Controller Audio Paging Controller Concrete Cure Monitor

Weather Station Monitor Message Display Server Lighting Controller

Web Camera Controller 19-Inch Rack Monitor Virtual Software Modem

Remote Print Server Server Room Monitor Power Monitor

Networked MP3 Player Smart Card Reader Utility Meter

Door Lock Controller Magnetic Card Reader RFID Reader

Time/Attendance Terminal Barcode Reader Security Sensor Controller

For more information

For the latest TINI downloads and API documentation, visit www.maxim-ic.com/TINI. The
300+ page TINI Specification and Developer’s Guide is also available online and contains many
useful examples and explanations of the TINI platform.

Dallas Semiconductor maintains a mailing list for the TINI community. To subscribe, visit
www.maxim-ic.com/TINI/lists.

9

Asynchronous serial-to-Ethernet
device servers
The sheer number of devices that use a serial port as a means for communicating with other elec-
tronic equipment is staggering. In fact, for many, a serial port provides the sole mechanism of
communicating with the outside world. This includes thermostats, point-of-sale systems, remote
monitors, barcode readers, receipt printers, RFID transceivers, blood-pressure meters, and many
more in fields ranging from legacy test tools to the latest in building automation. Such devices
have no direct means of participating in a larger computer network, yet new applications demand
TCP/IP connectivity and Ethernet capabilities. Often, an expensive and time-consuming redesign
is not an option.

This article explores an easy, economical way to move standalone serial devices to the Ether-
net by retrofitting legacy systems built on the TINI platform using the DS80C390 or DS80C400
microcontrollers. Once a device is connected to the Ethernet, implementing TINI web services
such as an HTTP server is straightforward.

RS-232 serial port

The asynchronous serial communication discussed in this article is based on the RS-232-C stan-
dard that dates back to the earliest days of recorded computer history. RS-232-C was published
in 19691. Most modern serial ports do not support all the signals defined in the standard.
Moreover, the signals that are implemented are used in a fashion that is merely “fairly close” to
that defined in the standard. We’ll ignore the purely historical definitions, and concentrate on the
way RS-232 is used today.

Space and mark

RS-232-C specifies a voltage level of +3V to +25V as “SPACE” (binary 0) and -3V to -25V as
“MARK” (binary 1). The region between -3V and +3V is the “switching region.” Many univer-
sal asynchronous receiver transmitters (UARTs) use the more modern (in relative terms) TTL
voltage levels of 0V and +5V for 0 and 1. Special-purpose level translators, like the famous
MAX-232, convert between TTL and RS-232 levels. Since the serial ports on the
DS80C390/DS80C400 are TTL-level, no level translators are needed when interfacing to anoth-
er TTL-level UART.

DCE and DTE

Data communications equipment (DCE) and data terminal equipment (DTE) are the two end-
points of a communications channel. The main difference is the serial connector pinout. A so-
called null-modem can be used to convert between the two.

Table 1 shows the signals on a DB-9 DTE serial connector and the corresponding signals on
another DTE when using a null-modem.

Flow control

Serial communication can be realized by sending on one pin (TD) and listening on another (RD).
However, when two devices that communicate over RD/TD transmit at will, one might overrun
the other, resulting in data loss. There are two ways flow control is commonly implemented:

• XON/XOFF (often loosely termed software flow control)

• RTS/CTS (often loosely termed hardware flow control)

. . . for many devices, a
serial port provides the
sole mechanism of com-
municating with the out-
side world.

1NASA has trouble deciphering computer tapes from this era, so the comparison is valid.

10

TINI encompasses a
chipset definition, and
an embedded operating
system integrated with a
highly optimized Java
runtime environment.

The XON/XOFF flow-control scheme transmits in-
band characters that cause the other side to pause
(XOFF, 13h) and resume (XON, 11h) transmission. The
XON and XOFF characters must be escaped in soft-
ware by the sender and unwrapped by the receiver if
they occur in a binary data stream.

RTS/CTS uses extra signaling lines. RTS (request to
send) is asserted by the sender. The receiver responds
with CTS (clear to send) when it is ready to receive data
and clears CTS when its receive buffer is full.

Some devices support flow control, some don’t. Thus,
the default setting is usually set to “no flow control,”
which should be overridden if a device is known to
implement flow control.

Speed, data bits, stop bits, and parity

Other parameters that must be set correctly for successful communications are the transmission
speed (bit rate), the number of data and stop bits, and the type of parity checking (if any). Most new
devices use a setting of “8N1,” which means 8 data bits, no parity, and 1 stop bit. However, legacy
systems are known to use the full range of possibilities, so the correct setting might not be trivial.

TINI and networking

TINI is a technology platform developed by Dallas Semiconductor to allow rapid development
on the DS80C390 and DS80C400 microcontrollers. Specifically, TINI encompasses a chipset
definition, and an embedded operating system integrated with a highly optimized Java runtime
environment. Using Java, programmers benefit from powerful features not commonly found in
embedded development: multithreading, garbage collection, inheritance, virtualization, cross-
platform capabilities, powerful networking support, and, last but not least, a multitude of free
development tools. TINI users are usually shielded from assembly language coding. However,
native language subroutines are supported and encouraged to optimize speed-critical paths or
low-level hardware access. (The TINI operating system is written in native code, resulting in
serial I/O throughput not significantly different from modern PCs.)

In addition to full support of the java.net package, the TINI Java runtime also contains an imple-
mentation of the javax.comm subsystem. Since both TCP/IP and the serial ports are effortlessly
accessible from Java, the TINI system easily lends itself to implementing serial-to-Ethernet
bridges.

The TINIm390 verification module on an E10 socket, which is used in the following examples,
is the hardware portion of the DS80C390 TINI development platform (the TINIm400 uses the
DS80C400). In addition to SRAM, flash memory, Ethernet, CAN-bus, 1-Wire, etc., the system
also has four serial ports. Two of the UARTs are internal to the DS80C390 (called serial0 and
serial1); two ports are external (using a 16550 build option). It is important to note that both ser-
ial connectors on the E10 socket are wired to serial0 and just differ in DTE/DCE pin assign-
ment.

The TINI environment is documented in great detail in The TINI Specification and Developer’s
Guide (Addison-Wesley, 2001). A free PDF copy can be downloaded from www.maxim-
ic.com/TINIguide.

Examples

We’ll start with two concrete applications and then present a short excerpt from a generic seri-
al-to-Ethernet program that can be modified to suit almost any application. The examples are
built using the TINIm390/400 verification modules.

DTE PIN SIGNAL NAME NULL-MODEM
1 CD (Carrier Detect) 4 (DTR)
2 RD (Receive Data) 3 (TD)
3 TD (Transmit Data) 2 (RD)
4 DTR (Data Terminal Ready) 6 (DSR) and 1 (CD)
5 Common (Signal Ground) 5 (Common)
6 DSR (Data Set Ready) 4 (DTR)
7 RTS (Request To Send) 8 (CTS)
8 CTS (Clear To Send) 7 (RTS)
9 RI (Ring Indicator) N/C

Table 1. A null-modem can be
used to connect the corre-
sponding signals of two DB-9
DTE serial ports.

11

The TINI verification module serves as a “black box” to connect multiple serial devices to the
Ethernet. Depending on end-equipment requirements, the TINI can either pass the data straight
through or parse, interpret, and modify the data stream (Figure 1).

Although you can run the examples from the
slush developer’s shell on the TINIm390/
400, a more polished application would
reside in flash, be self-starting in the event of
a power loss, and use other TINI construc-
tion techniques to make the finished product
virtually indestructible.

Some basic networking knowledge and programming experience are required to modify the exam-
ples. Working sample code is also downloadable from the Dallas ftp site (ftp://dalsemi.com).

Virtual modems

The first example, a “Virtual Modem,”3 uses the TINIm390/400 to replace a physical modem and
telephone line with TCP/IP connectivity. Assume a legacy device like a factory “machine status
monitor” that uses a modem to dial into a central server several times a day to report machine sta-
tus, load, and efficiency data. To eliminate the need for an ever-growing modem bank on the serv-
er side and to be able to use an existing LAN instead of phone lines to the equipment, one could

• rewrite the server software to be TCP/IP based, and

• use TINI virtual modems to replace the original modems at each machine.

The machine status monitors, however, do not have to be modified since the virtual modem
behaves like a real modem as far as the end equipment is concerned!

Virtual modems can, of course, also be used in pairs instead of the configuration described
above. When using two virtual modems, no server software needs to be changed at all and the
TINI modules are a drop-in replacement for existing modems.

Behind the scenes, a virtual modem establishes a TCP connection whenever it receives the “ATD”
modem dial command. An “ATH” disconnect command closes the TCP connection. The software
also implements a number of other classic AT modem commands and is recognized as a true modem
by Microsoft® Windows® networking, for example. In addition, a virtual modem listens on a TCP
port and can answer incoming “calls” signaled by a “RING” to the end equipment.

The following code fragments show how to initialize a serial port on the TINIm390:

public static void main(String args[])
{

TINIOS.setSerialBootMessagesState(false);
TINIOS.setDebugMessagesState(false);
TINIOS.setConsoleOutputEnabled(false);
System.out.println("Connecting to serial0 at 9600bps, "

"listening on TCP port 8001");
try {
CommPortIdentifier portId =
CommPortIdentifier.getPortIdentifier("serial0");
SerialPort port = (SerialPort) portId.open("VModemTINI",
10000);

TINIOS.setRTSCTSFlowControlEnable(1, false);
TINIOS.setRTSCTSFlowControlEnable(0, true);
TCPSerialVirtualModem modem = new
TCPSerialVirtualModem(port,

In addition to full support
of the java.net package,
the TINI Java runtime
also contains an imple-
mentation of the
javax.comm subsystem.
Since both TCP/IP and
the serial ports are
effortlessly accessible
from Java, the TINI sys-
tem easily lends itself to
implementing serial-to-
Ethernet bridges.

Figure 1. The TINI device
server is used as a bridge
between serial devices and
Ethernet.

SERIELLE GERÄTE
NETZWERK

TINI-VERIFIKATIONSMODUL

BLACK BOX

SERVER
ODER

KLIENTSERIELL ETHERNET
DALLAS�

NETWORKED�
MICROCONTROLLER

3Refer to Application Note 196: Designing a Virtual Modem Using TINI at www.maxim-ic.com.

12

/* Comm speed */ 9600, /*TCP Port */ 8001);
modem.processInput();

}
catch (Exception e) {

System.out.println("Exception: "+e.toString());
}

}

The code first disables all TINI OS debug output, standard practice on the TINI. After getting a
port identifier, the port is then opened (the second parameter tells how long to wait if the port is
currently in use by another application). Next, the state of the hardware flow control is set. Since
the TINIm390 has only one set of RTS/CTS lines for serial ports 0 and 1, a program should
always disable flow control on the other port before enabling it on the desired port. Next, a Java
virtual modem is instantiated.

The virtual modem class consists of an AT command interpreter (not shown here, although by far
the largest part of the example) and networking code. The following code sets the serial port bit
rate, data and stop bits, as well as parity, and shows how easy it is to handle inbound connections:

/** Creates a new VirtualModem connected to a serial port on
* one end and a TCP port on the data side.
* serial -- the serial port this VirtualModem talks to.
* speed -- the speed the serial port should be set to.
* tcpport -- the TCP port this VirtualModem listens on.
* throws IOException when there's a problem with the serial

or TCP port.
*/

public TCPSerialVirtualModem(SerialPort serial, int speed, int
tcpport)

throws IOException
{

super(serial);

try {
serial.setSerialPortParams(speed, SerialPort.DATABITS_8,

SerialPort.STOPBITS_1,
SerialPort.PARITY_NONE);

}
catch (UnsupportedCommOperationException e) {

throw new IOException();
}

...

serverSock = new ServerSocket(tcpport, 1); // backlog of one
listenThread = new listenInbound();
listenThread.start();

}

Finally, the following excerpt of the listenThread() accepts an incoming connection
request:

public void run()
{

int rc;
Socket s;
while (running) {

s = null; // No incoming connection request
try {

13

answered = false;
s = serverSock.accept();

// Discard incoming connection if already connected
if (connected)

throw new IOException();

sock = s; // for answer()
...

UPS monitor

The second example connects a TINIm390/400 to a serial port of an uninterruptible power sup-
ply. The software implements the Network UPS Tools protocol4, allowing a variety of clients on
a variety of platforms to monitor the UPS state and health. This project originated from the need
to monitor an existing UPS from a new Macintosh computer without serial ports.

There are two basic kinds of UPS devices: so-called “smart” ones and simple (or “dumb”)
ones. A simple UPS signals its state on several serial pins; it does not actually send any ASCII
data. Because there are not many serial pins, it can only report a limited set of information, for
example:

The javax.comm.notifyOn…() methods can be used in Java to easily implement code that
reacts to status changes, for example:

...
// Listen for DTR changes
try {

port.addEventListener(this);
} catch (TooManyListenersException e) {

...
}
port.notifyOnDSR(true);
...

public void serialEvent(SerialPortEvent ev)
{

try {
if (ev.getEventType() == SerialPortEvent.DSR)

...
} catch ...
...

}

A smart UPS is more interesting, since it implements a serial protocol and can return values like
the battery charge percentage or the temperature. Protocols are vastly different between differ-
ent vendors and often undocumented. The UPSMonitor example on the Dallas ftp site supports
an APC SmartUPS, but could be easily modified for other brands.

SIGNAL MEANING

RTS (from UPS) Low Battery

TD (from UPS) On Battery

CTS (to UPS) Kill UPS Power

The TINI verification
module can be used as
a “black box” to con-
nect multiple serial
devices to the Ethernet.
Depending on the end-
equipment require-
ments, the TINI can
either pass the data
straight through or
parse, interpret, and
modify the data stream.

4See www.exploits.org/nut/.

14

The following code shows how to receive UDP requests and send out UPS status information
over UDP.

// Listen to incoming UDP requests
private class listenUDPThread extends Thread
{

private DatagramSocket sock;
private byte[] buffer;
private DatagramPacket dp;

public listenUDPThread(DatagramSocket s)
{

sock = s;
buffer = new byte[BUF_SIZE];
dp = new DatagramPacket(buffer, buffer.length);

}

public void run()
{

while (running) {
try {

sock.receive(dp);
byte[] data = parseCommand(buffer, dp.getLength());
sock.send(new DatagramPacket(data, data.length,

dp.getAddress(), dp.getPort()));
}
catch (Exception e) {
}

}
try {

sock.close();
}
catch (Exception e) {
}

}
}

Because of the powerful networking support built into Java, this example is almost self-explana-
tory. The code in the while() loop waits until it receives a UDP request, parses it, and sends
out an answer to the originator of the request using getAddress() on the incoming packet.

Generic serial-to-Ethernet application

A complete serial-to-Ethernet example is beyond the scope of this article. (A complete example
is shown and explained in the The TINI Specification and Developer's Guide.) However, the fol-
lowing code fragment shows how to efficiently use multithreading to transfer data between the
serial and networking portions of a serial-to-Ethernet bridge. The serial and TCP ports are
abstracted as Input/OutputStreams dataIn and dataOut, so this layer of the code does not
actually need to know anything about the network, and it could also bridge data between the
CAN and 1-Wire, for example.

public GenericBridge()
{

...
running = true;
dcThread = new dataCopy();
dcThread.start();

}

...serial and TCP ports
are abstracted as
Input/OutputStreams
dataIn and dataOut...
to bridge data between
the CAN and 1-Wire....

15

// Thread that copies everything from dataIn to dataOut
private class dataCopy extends Thread
{

public void run()
{

int r = 0;
while (running && r >= 0) {

try {
synchronized (threadLock) {

r = dataIn.read(dataBuffer);
if (r > 0)

dataOut.write(dataBuffer, 0, r);
}

}
catch (Exception e) {

r = -1;
... // Handle error

}
}

}
}

}

Conclusion

Many legacy devices only support asynchronous serial communications, yet current applications
demand Ethernet connectivity and TCP/IP networking. Using the powerful Java runtime and the
TINI technology on the DS80C390 and DS80C400 microcontrollers, developing a serial-to-
Ethernet converter is easy and can be done in a matter of hours.

Microsoft and Windows are registered trademarks of Microsoft Corp.

16

Designing a networked On/Off
switch using the TINI platform

The TCP/IP network stack and local control capabilities needed to
design an IP-networked relay are provided by the TINI platform. Adding
a Java runtime environment greatly reduces the complexity with
which small sensors and actuators can be accessed and controlled
remotely over a network. The following discussion, which presents an
IP On/Off switch constructed with a simple relay circuit and a
TINIm390/400 verification module, can be extended to other remote
monitoring and control applications as well. Familiarity with object-
oriented programming such as the Java language is assumed.1

The circuit is controlled with an application called TINIWebServer
(slightly modified), which is executed directly by the TINI runtime
environment. An applet, served to the host workstation, opens two-
way communications back to the TINI runtime environment for com-
mands and status, and displays a graphical user interface for simple
remote control of the relay.

System software overview

The class com.dalsemi.tininet.http.HTTPServer enables
the switch-control application to implement a simple web server whose
only purpose is to transfer an applet to the remote host. Executed with-
in the host’s browser, the applet establishes a two-way TCP connection
for exchanging commands and status with the TINI application. The
applet also provides a graphical user interface for displaying controls
and status. Figure 1 represents the overall software system.

System hardware overview

In Figure 2, an On/Off control circuit forms the interface for a
TINIm390/4002 verification module. The TINIm390/400 provides
Ethernet network connectivity and controls the switch through port
pin P5.0 (other port pins work equally well). An n-channel power
MOSFET controls the relay by switching current from the relay to
ground. You can accommodate various current and voltage require-
ments by resizing the relay and FET, and the relay can be omitted alto-
gether if you don’t need to isolate the external circuit from the TINI
verification module’s power supply. The diodes protect against volt-
age spikes from the relay coil while the switch is changing state. To
make possible new services such as networked switch control, the
hardware and software components have been integrated in the TINI
chipset reference design with standards-based Internet technologies.

The TINI switch-control application

Four classes make up the switch-control and web-server-interface
portions of this application. The PowerSwitch class interfaces
directly to the hardware using the TINI class com.dalsemi.sys-
tem.BitPort API class. The WebWorker class comes directly
from the TINIWebServer example in our Software Developer’s Kit
(TINI SDK), and is responsible for servicing the arriving HTTP con-

WEB SERVER HTTP

APPLET JAR FILE

PORT 3456

COMMAND/STATUS

SWITCH
SERVER

APPLET
JAR
FILE

TINI

WEB SERVER

SWITCH
SERVER

APPLET
JAR
FILE

TINI HOST

WEB SERVER

SWITCH
SERVER

APPLET
JAR
FILE

TINI

WEB SERVER

SWITCH
SERVER

APPLET
JAR
FILE

TINI

HOST

HOST

BROWSERAPPLICATION

APPLICATION

APPLICATION

APPLICATION

APPLET

HOST

BROWSER

BROWSER

BROWSER

APPLET

TINIm390/400

COTX (P5.0/CTX)

NDP4060
N

SOURCE

LOAD1N
40

01

1N
40

04

PWRSW

VCC

Figure 1. The web server
application software executing
on the TINI runtime environ-
ment uses an HTTP connection
to transfer an applet to the
host and sets up a two-way
connection for transferring
command and status data.

Figure 2. The TINI chipset refer-
ence design controls the switch,
which is a simple transistor and
relay circuit with protection diodes,
using any available port pin.

1Readers should particularly understand the terms class, method, object, and constructor in this context.
2The TINIm390 data sheet can be viewed at www.ibutton.com/TINI/dstini2.pdf.

17

nections. The SwitchWorker class manages all command and status communications
between the applet and the TINI application. The TINIWebServer class drives the applica-
tion by binding together operation of the individual classes.

The PowerSwitch class is an interface to the hardware, creating a BitPort object for pin
P5.0 in its constructor. Two methods are implemented in this class. The On method sets the state
of the port pin used to apply voltage to the relay’s coil; the Off method removes voltage from
the coil by clearing the state of the port pin. The single pole, double throw (SPDT) relay in
Figure 2 can operate in the normally closed or normally open position, or it can switch the exter-
nal voltage source between those two positions. The On and Off methods assume the circuit is
normally open, and must be modified to accommodate the normally closed circuit. To indicate
whether on/off corresponds to the BitPort set or clear method, an extra boolean variable
(invert) can be added to this class. Another method (setInvert) would be needed to ini-
tialize the invert variable. The hardware diagram illustrates a normally open circuit.

The WebWorker class provides an interface between the network and the application. It sim-
ply sets up and drives an object (com.dalsemi.tininet. http.HTTPServer), which
in turn spawns a thread that services each incoming HTTP connection. This class is essentially
unchanged from the TINIWebServer example mentioned above. Accessible from any loca-
tion on the network, the HTTPServer can prompt for a password, or accept other forms of con-
trol that limit access to approved users only.

The TINIWebServer allows remote control of the switch by tying
together the network and hardware interfaces (Figure 3). The
drive() method, for instance, sets up the web server by creating a
WebWorker thread and creating the web page “index.html.” The pri-
mary purpose of the web page is to download and run the applet on the
host workstation. The application would not have to create the web
page if the index page contained only static information. Rather, the
index page could simply be copied to the web server’s root along with
the jar file containing the applet.

The one parameter in the web page that changes on every TINI chipset
design is CODEBASE. The applet uses that information to connect back
to the TINI application on a separate server socket. A custom web page
could be created and uploaded to each TINI chipset reference design that
is installed in the field. An easier approach has the page created by the
application each time it is run. The createIndexPage method cre-
ates the file index.html and inserts the IP address into the CODEBASE
section using three writes:

1) index.write(indexTop.getBytes(), 0, indexTop.length());

2) index.write(InetAddress.getLocalHost().getHostAddress().getBytes());

3) index.write(indexBottom.getBytes(), 0, indexBottom.length());

The first and third writes copy the static portions of the web page into the file, and the second
write copies the IP address to the CODEBASE section of the file. After the application sets up
the web server and creates the page, it starts the web server. It creates a server socket to handle
incoming connections from the downloaded applets, and calls the serviceConnection
method each time an applet connects with the TINI application.

The serviceConnection method creates a new instance of SwitchWorker and passes
the socket to this class. The SwitchWorker constructor creates a new thread to manage the
connection between the host applet and the TINI application. The serviceConnection
method also handles the next incoming connection and then transfers control to the drive
method.

CREATE WEB
PAGE,

INSERTING TINI's
IP ADDRESS AS
THE CODEBASE

START
WebWorker

CREATE
SWITCH
SERVER

WAIT FOR
CONNECTION
FROM APPLET

CREATE
SwitchWorker

THREAD TO
MANAGE

CONNECTION

CREATE
WebWorker

Figure 3. The TINIWebServer
class creates a webpage and
starts a webserver before cre-
ating the switch server to serv-
ice incoming command and
status requests.

. . . the applet establishes
a two-way TCP connec-
tion for exchanging
commands and status
with the TINI application.

The one parameter in the
web page that changes
with every TINI is CODE-
BASE.

18

The SwitchWorker class manages all communications
between the applet and the webserver (Figure 4). Until the
connection is dropped, it loops continuously, performing
the following steps:

• Block on read(), waiting for a command byte from the
applet.

• If the command byte is 0, turn the switch off. If the byte
is 1, turn the switch on.

• Read the current switch state and send it back to the
applet.

The algorithm can be extended to multiple switches by allocating each of
the seven lower bits of the command byte to represent the state of a sepa-
rate switch (Figure 5). The most significant bit is reserved to indicate a
read-only operation. The algorithm can also be extended to allow multiple
applets to connect to a single TINI webserver application at the same time.
The SwitchWorker simply keeps a “vector of listeners.” Each time an
applet sends a command to change a switch’s state, the webserver sends
the status back to all of the applets currently connected.

The host applet

An applet is used on the host because it provides a rich set of graphical
objects for the display of controls and status, and enables (among other
things) two-way communications. The TINI class com.dalsemi.
tininet. http. HTTPServer class is fast and small, but it supports
only the HTTP GET operation. The resulting data can flow only in one
direction from the TINI application to the host. This application, however,
requires data flow in both directions; commands are sent from the host to
the TINI webserver and status is sent from the webserver to all connected
hosts. Communication between the host and the TINI application incurs no
protocol overhead. Its 1-byte commands and 1-byte status allow very quick
responses for control and status.

The host applet includes two classes: the primary class (SwitchControl)
handles host-side network communications and creates all graphical ele-
ments displayed on the web page (Figure 6); the other class
(ImageButton) creates a graphical toggle button that displays one of
two bitmaps according to the button’s status (Figure 7). The toggle but-
ton should be sufficient for control and status of the switch, but the
behavior of applets varies from one browser to another. Accordingly,
simple On/Off buttons and a text window for status were added to
accommodate a wider range of browsers. ImageButton and On/Off
buttons perform the same control function, just as bitmaps and the status
window perform the same status function.

After creating the graphical elements, the SwitchControl class cre-
ates a status listener thread. The thread then sleeps, blocked on read, wait-
ing for status from the TINI application. When the thread unblocks, the
ImageButton bitmap and the status window are updated and the
method loops back to the top of the method to await the next status byte.
The applet-event thread drives the actionPerformed method, which
is called each time a graphical button is pressed. If a call is triggered by
the ImageButton or the On/Off button, it toggles the current state and
sends an On or Off command to TINI. If triggered by the On/Off button,
it sends an On/Off command. The ImageButton class is simply an
exercise in AWT (Abstract Window Toolkit) component programming.

TURN
SWITCH

OFF

READ COMMAND
BYTE

ADD SELF TO
LIST OF STATUS

LISTENERS

SEND UPDATED
STATUS TO ALL

LISTENERS

TURN
SWITCH

ON

COMMAND = 1

COMMAND = 0
Y

Y

N

Figure 5. The command byte
simply uses one bit per switch
for control of up to seven
switches and reserves the last
bit to distinguish a status
request from a command.

R/W SW 6
STATE

SW 5
STATE

SW 4
STATE

SW 3
STATE

SW 2
STATE

SW 1
STATE

SW 0
STATE

Figure 4. The SwitchServer
executing on the TINI runtime
environment sets up the lis-
tener and loops indefinitely,
waiting for commands, setting
the switch state based on
those commands, and sending
the updated state back to all
listeners.

19

Conclusion

It is easy to implement an On/Off switch con-
trolled remotely over a network with the TINI
runtime environment, a Java application, and a
simple relay circuit. The large selection of
available circuit components makes possible a
variety of applications, with control (from any
location with network access) of anything from
light bulbs to industrial equipment.

These two groups�
of controls are�
redundant

ImageButton–�
toggle switch�
and graphical�
status

Simple switch �
controls and �
status

TINIWebSwitch

Figure 7. The switch-control
applet supplies Off/On but-
tons and status fields to give
remote control and feedback
on the physical switch state.

START STATUS
LISTENER THREAD

BLOCK ON
READ()

UPDATE STATUS
CONTROLS

GET CURRENT
STATE

SEND
COMMAND TO
TOGGLE STATE

SEND ON
COMMAND

SEND OFF
COMMAND

START AWT
ACTIONLISTENER

ImageButton
PRESSED

ON BUTTON
PRESSED

OFF BUTTON
PRESSED

Y Y Y

N N N

Figure 6. The applet's
SwitchControl class uses one
thread to read incoming status
from the webserver and update
the controls. It uses a second
thread to detect user input and
send the commands back to the
TINI webserver.

Associated files

Files associated with this article are located at
ftp://ftp.dalsemi.com/pub/tini/appnotes/
NetSwitch/NetSwitch.tgz.

20

Embedded networking with IPv6
Address space for IP nodes is getting tight. Although not all of the 232 (roughly 4 billion) IPv4
addresses1 have been allocated (and in 2001 there was a slight dip in the previous exponential
growth)2, industry expects to run out of addresses in the course of the next few years. The next
generation of IP—IPv6—extends the addressing space to 2128, a number far beyond human
imagination, about 6.67 x 1023 addresses per square meter of our planet3. This will ensure all
future devices get a unique address of their own.

Having enough addresses eliminates the need for network address translation (NAT)4, temporary
address leases, and other kludges necessary to conserve the strictly rationed IPv4 addresses.
Although there will be significantly more desktop and server computers as well as other classic
network devices, a tremendous increase is expected in a different area—multitudes of small
devices will change internetworks as we know them today. The new network citizens are always
on wireless and mobile devices like GPRS and UMTS cell phones or PDAs. Also included are
small embedded devices, monitors, sensors, and smart nodes built into almost anything, from cars
to water meters.

But IPv6 not only extends the addressing space. It overhauls IP to make configuration easy and
automatic (another must for embedded applications); it makes IP more robust, extensible, and
mobile, adds security features and quality-of-service support, and simplifies and speeds up rout-
ing. A severe problem plaguing IPv4 is the unimpeded growth of the backbone routing tables
due to the almost random way IPv4 addresses were originally allocated. IPv6 is a better, reengi-
neered IP and will gradually replace IPv4—there are just too many advantages to pass it by. Dual
IPv4/IPv6 network stacks support mixed environments and allow for gradual adoption of IPv6.

Asia (especially Japan) was one of the first to adopt IPv6 since this region was somewhat short-
changed when IPv4 addresses were assigned initially. India and China have the largest expect-
ed internetwork growth, both in relative and absolute numbers. Because of its benefits and gov-
ernment-mandated adoption plans in several countries, IPv6 is becoming increasingly important.
It long ago left the prototype stage and is now a standard part of most operating systems, for
example, Microsoft Windows XP, Sun Solaris™ 8/9, etc.5

This article presents a brief introduction to IPv6 and describes how to use IPv6 networking with
the silicon software resident in the DS80C400 microcontroller. Basic network literacy and a rea-
sonable level of comfort with IPv4 are required to benefit from this article.

IPv6 Overview

Addresses

An important part of IPv6’s auto-configurability is the way addresses are used. A 128-bit IPv6
address is divided into a 64-bit prefix (net bits or subnet) and 64 host bits. The prefix, which also
shows the scope of an address, is either assigned by the network provider6 and broadcast by
routers or it can be local to the link or site. On an Ethernet, the host bits are usually derived from
the device’s unique MAC (media access control) address (in the form of IEEE EUI-64). This
means that an IPv6 node is operational with a valid IP address as soon as it is plugged in. To
communicate globally, the node needs to solicit or listen to the router broadcasts containing the
prefix and combine the prefix with the EUI-64. Unlike the DHCP addition to IPv4, all IPv6
nodes can be self-configuring, even in the absence of a server.

IPv6 addresses are written in hexadecimal notation in groups of 16 bits, for example
3ffe:aaaa:bbbb:cccc:260:8ff:fe8d:6ee9, which is an address of global scope.

The next generation of
IP—IPv6—extends the
addressing space to
2128, a number far
beyond human imagina-
tion, making sure all
future devices get a
unique address of their
own.

1The current IP is Version 4 (IPv4).
2Due to the way IPv4 addresses are allocated, only about 160 million addresses are actually available.
3The total Earth surface is approximately 509,917,870 square kilometers.
4 Or “IP masquerading.”
5Visit www.ipv6.org for more information.
6Usually, 48 prefix bits are assigned by the ISP; 16 are at each site’s discretion.

21

The same machine would have the “link-local” address fe80::260:8ff:fe8d:6ee9,
where fe80::/64 is the prefix for link-local addresses; /64 shows the length of the prefix and
:: is short for 0s. The loopback host (127.0.0.1 in IPv4 parlance) is simply ::1. Site local address-
es have a prefix of fec0::/10. Since there is no direct equivalent to site local addresses in IPv4,
these addresses are rarely used now.

From a user’s view, these long addresses are, of course, normally hidden behind DNS names like
www.maxim-ic.com. To serve IPv6 addresses, an IPv6-capable DNS server is required7.
There are no fundamentally new concepts; an IPv6 address entry in the DNS would be created
as example IN AAAA 3ffe:aaaa:bbbb:cccc:260:8ff:fe8d:6ee9 instead of
the IN A record used for IPv4. DNS use is strongly encouraged, since IPv6 address prefixes are
expected to change more frequently. Network renumbering is much easier than with IPv4 and it
can even be automatic.

There are both unicast and multicast addresses in IPv6. In addition, a new anycast address des-
tination type was defined. A packet addressed to an anycast IP is delivered to the closest or best
host from several hosts. Anycast helps achieve load balancing through routing8.

Protocols

Although IPv6 keeps the higher layer protocols UDP and TCP without any changes, the IP pack-
et header had to be modified to accommodate the larger addresses. It was also cleaned up and
streamlined to be 64-bit aligned and to always have a fixed length for the benefit of routers; the
IP header checksum was removed since the higher layer protocols already have a checksum that
encompasses parts of the IP header.

An interesting modification is the replacement of ARP with the neighbor discovery protocol
(NDP), part of the new ICMPv6. Instead of broadcasting address resolution requests all over the
campus, IPv6 maps multicast groups and IPv6 addresses in a way that eliminates these broad-
casts and ensures that nodes (almost) only receive traffic that really interests them.

The details of ICMPv6 and multicasting are beyond the scope of this article. Refer to
www.ipv6.org for pointers on this and many other interesting IPv6 features.

TCP/IP on the DS80C400

The on-chip DS80C400 silicon software (ROM) contains the latest revision of the field-proven
Dallas TCP/IP stack. The silicon software also includes a small operating system and all utility
functions needed to develop small C or assembly language TCP/IP network client and server
applications with as little as 128kB of external memory. The DS80C400 can also be used with
the TINI Java runtime environment when easier and more rapid application development is
desired, or when any of the extended Java features like object serialization are required.

The resident C and assembly language support is implemented in the form of a BSD and indus-
try-standard, cross-platform socket interface, i.e., functions like socket(), bind(), listen(),
accept(), connect(), send() etc.9

The TINI Java environment closely follows JDK 1.1.8 and supports the entire java.net pack-
age; any Java compliant compiler can be used. The TINI executes standard Java programs and
byte codes. An overview and detailed documentation for the TINI runtime can be found on our
website (www.maxim-ic.com/TINI).

In addition to network application support, the DS80C400 silicon software also implements net-
work boot functionality, which can load applications over TFTP, supporting both DHCP on IPv4
and, even easier, TFTP over self-configuring IPv6. Figure 1 shows the DS80C400 network boot
over IPv4 and IPv6, respectively. The network bootloader is invoked either by a hardware pin

. . . IPv6 not only
extends the addressing
space, it overhauls IP to
make configuration easy
and automatic.

7For example, BIND9 from www.isc.org/products/BIND/.
8On IPv4, DNS load balancing (e.g., round-robin) is commonly used, which does not take routing issues into consideration.
9These and all other supported functions are documented in the High-Speed Microcontroller User’s Guide: DS80C400 Supplement. Visit www.maxim-ic.com/

MicroUserGuides.htm.

22

on the DS80C400 or by a user command in the serial
bootloader.

IPv6 on the DS80C400

The DS80C400 silicon software supports the IPv6 fea-
tures needed10 to participate on the network and follows
the “Minimum Requirements of IPv6 for Low-Cost
Network Appliances” draft11. Because embedded-device
resources are constrained, we do not anticipate embed-
ded devices implementing the full IPv6 feature set
including security, mobile IP, and routing.

The adoption of IPv6 will be phased in over several
years. The DS80C400 network stack, therefore, is an
integrated dual stack for both IPv4 and IPv6. There are
ways to tunnel IPv6 over existing IPv4 networks
(6over4); since the DS80C400 supports both protocol
families, it expects routers to tunnel packets if necessary
and does not perform protocol conversions itself.

Example 1 runs on the TINI 1.1 Java environment for the
DS80C400 and shows fragments of a simple multithread-
ed network server handling both IPv4 and IPv6 requests.
You will not see the IPv6 specific code in this example,
because there is none. Applications can usually be ported

from IPv4 to IPv4&6 with zero effort; only the printing of IP addresses has to be checked and pos-
sibly replaced by a call to TINI 1.1 utility functions provided for that purpose. The TINI 1.1 Java
environment adds the Java 2 SE 1.4 Inet6Address class to support IPv6. No other user-visible
changes are required, and all other changes are behind the scenes.

Example 2 is the core of a network client written in C that relies solely on the DS80C400
silicon software. Again, there is no IPv6-specific code except for the target address. In the
DS80C400 network stack implementation, all network addresses are 128-bit long. Internally,
IPv4 addresses are right-aligned and the first 96 bits are set to 0. The example assigns an IPv6
target address and a target TCP port, creates a socket, and then connects to the target.

Example 1. TINI Java Network Server

// Listen to inbound TCP connections
private class listenTCPThread extends Thread
{

private ServerSocket serverSock;
public void run()
{

while (running) {
try {

// Create new thread for each client
Thread client = new clientTCPThread(serverSock.accept());
client.start();

}
catch (Exception e) {}

}
...

The DS80C400 can also
be used with the TINI
Java runtime environ-
ment when easier and
more rapid application
development is desired
or when any of the
extended Java features,
like object serialization,
are required.

YES NO

YES NO

NO

YES

FAILURE

FAILURE

START NETWORK BOOT

CONFIGURE STATIC IPv4 IPv6 AUTO CONFIGURATION

READ 1-WIRE MAC ID

STATIC IPv4
ON 1-WIRE?

TFTP IP
ON 1-WIRE?

IPv6?

GET IPv4 BY DHCP

START TFTP TRANSFER

RUN APPLICATION CODE

Figure 1. The DS80C400
takes advantage of IPv6
autoconfiguation when
booting from the network.

10The IPv6 portion of the DS80C400 Silicon Software was developed in close collaboration with InternetNode, Inc., a joint venture of the Japanese company
Yokogawa and Wide Research Institute Co. Ltd.

11See www.tahi.org/lcna/.

23

private class clientTCPThread extends Thread
{

private Socket sock;
private InputStream is; private OutputStream os;
BufferedReader br;

public clientTCPThread(Socket s) throws IOException
{

sock = s;
is = s.getInputStream(); os = s.getOutputStream();
br = new BufferedReader(new InputStreamReader(is));

}

public void run()
{

// Loop while socket is open
try {

while (running) {
os.write(parseCommand(br.readLine().getBytes(), 0));

}
}
...

Example 2. C Network Client

{
struct sockaddr target;
unsigned int s;
...
/* Fill sockaddr with valid IPv6 target address and port */
target.sin_addr[0] = 0x3f;
target.sin_addr[1] = 0xfe;
...
target.sin_addr[15] = 0xe9;
target.sin_port = 34000;

/* Open socket and connect to target address */
s = socket(0, SOCKET_TYPE_STREAM, 0);
result = connect(s, &target, sizeof(struct sockaddr));

... /* Send/receive data here */

closesocket(s);
}

Conclusion

As an evolution and fine-tuning of the IP protocol, IPv6 is becoming more important and cru-
cial for the success of networked embedded devices. IPv6 provides an unlimited number of IP
addresses, auto-configuration, and a general streamlining of the IP protocol.

The DS80C400 makes writing an application that supports both IPv4 and IPv6 networking easy.
IPv6 offers compelling benefits for all new applications.

Solaris is a trademark of Sun Microsystems.

IPv6 is a better,
reengineered IP and
will gradually replace
IPv4—there are just
too many advantages
to pass it by.

